ХИМИКИ СПБГУ СОЗДАЛИ ТЕХНОЛОГИЮ 3D-ПЕЧАТИ ИМПЛАНТАТОВ ИЗ НАНОЧАСТИЦ



КОЛЛЕКТИВ УЧЕНЫХ ИЗ САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА, ИНСТИТУТА ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ РАН И УНИВЕРСИТЕТА ГАННОВЕРА РАЗРАБОТАЛ НОВУЮ ТЕХНОЛОГИЮ 3D-ПЕЧАТИ МАТЕРИАЛОВ ДЛЯ ТКАНЕВОЙ ИНЖЕНЕРИИ ПУТЕМ ФОТОСШИВАНИЯ НАНОЧАСТИЦ. РАЗРАБОТКА ПОЗВОЛИТ ВЫЙТИ НА НОВЫЙ УРОВЕНЬ ИМПЛАНТИРОВАНИЯ.

 

Современная тканевая инженерия позволяет восстанавливать достаточно большие дефекты различных тканей человека — мышечной, нервной, соединительной и других. Для этого применяются имплантаты на основе комбинаций стволовых клеток из тканей пациента и специальных материалов, необходимых для обеспечения трехмерного роста клеток. Точный подбор этих элементов для конкретного пациента позволяет достичь высокой биосовместимости имплантатов с человеческим телом и использовать их для замещения участков поврежденной ткани, а иногда даже для внутренних органов. Материалы, используемые для создания подобных индивидуальных имплантатов, называются скаффолды (от англ. scaffold — строительные леса). На скаффолде располагают биологический материал: клетки и специальные биомолекулы — белки или пептиды, способствующие прикреплению, размножению и функционированию клеток). Таким образом, клетки на скаффолде, как рабочие на строительных лесах, воспроизводят полноценную живую ткань человеческого тела и замещают ей поврежденную.

 

"Мы использовали суспензии наночастиц и с их помощью напечатали скаффолды на 3D-принтере. Испытания на клетках in vitro показали достаточную механическую прочность этих материалов, а также их биосовместимость", - сказал руководитель лаборатории биоматериалов СПбГУ, доцент СПбГУ (кафедра медицинской химии) Виктор Коржиков-Влах.

 

Как рассказал эксперт, главное преимущество использования наночастиц в том, что они, в отличие от массивных материалов, применяемых в трансплантологии, позволяют создавать структуры, подражающие сложноорганизованным биологическим тканям. Такие материалы необходимо использовать, когда структура имплантата должна быть неоднородна, как, например, человеческая кость, имеющая жесткую внешнюю и пористую внутреннюю структуру. Другой пример — контакты костной и хрящевой ткани, требующие восстановления после травмы.

 

Исследование выполнено с использованием инфраструктуры ресурсных центров Научного парка СПбГУ: "Магнитно-резонансные методы исследования", "Методы анализа состава вещества", "Развитие молекулярных и клеточных технологий", междисциплинарного ресурсного центра по направлению "Нанотехнологии". Отметим, что сегодня в СПбГУ активно развивается направление разработки биоэлектронных протезов. Так, в конце 2022 года ученые Университета разработали новые нейронные имплантаты без металлов в составе.

 

В качестве "чернил" для 3D-печати скаффолдов химики СПбГУ использовали наночастицы на основе полимолочной кислоты, представляющей собой биоразлагаемый полимер, а также нанокристаллической целлюлозы. Объединить частицы в трехмерные структуры стало возможно за счет реакции фотосшивания — специального процесса образования ковалентных связей (так называемых сшивок) между частицами при облучении их ультрафиолетом.

 

По словам авторов исследования, "чернилами" также могут быть суспензии различных наночастиц, обладающих разной жесткостью, с применением нескольких печатающих головок 3D-принтера — это позволит создавать скаффолды, обладающие градиентом механических свойств. Кроме того, частицы можно модифицировать биологическими компонентами, которые будут распределяться в пространстве скаффолда при 3D-печати, таким образом создавая основу для формирования, например, кровеносных сосудов или межтканевых контактов.

 

Исследование опубликовано в Polymers.

 

Источник

 

 

Внимание!
Принимаем к размещению новости, статьи или пресс-релизы
со ссылками и изображениями. info@additiv-tech.ru

 

rss