Материалы для аддитивного производства



Мастер хорош лишь настолько, насколько хороши его инструменты. Так и 3d принтер хорош лишь настолько, насколько хороши используемые им материалы. Все мы слышали об аддитивном производстве (АП), но чтобы эта технология, прошла от быстрого создания прототипов до массового производства, ей нужно преодолеть множество препятствий.

Несомненно, одним из самых крупных барьеров в превращении 3d печати в производственный процесс, являются ограничения, связанные с материалами. Мы прошли уже большой путь от дней, когда применялись только фирменные пластмассовые нити. В последние годы быстро развивается АП с использованием металла, и тенденция открытых платформ для полимеров для 3d печати, поощряет многих игроков, таких как DuPont, создавать новые применения материалов для аддитивного рынка.

Состояние отрасли аддитивного производства

Можно даже не говорить о росте рынка АП в последние десять лет. Более того, имеющиеся прогнозы предполагают, что рынок 3d печати продолжит обгонять традиционные технологии производства, такие как литье под давлением и станки с ЧПУ. Прогноз для АП с применением металла еще более оптимистичен, что объясняет, почему компании, такие как Vulcan Laboratories, которые ранее концентрировались на АП с применением полимеров, начали инвестировать в применение металла.

Заметные изменения индустрии АП легче воспринять, оценив, насколько продвинулась эта отрасль за такое короткое время. «В 2008 году 3d печатью занималась горстка компаний, выпускавших пару принтеров в год в исследовательских целях. Но теперь вся отрасль развивается со скоростью, значительно отличающейся от той, которая была 10 лет назад», — говорит Джон Кавола (John Kawola), президент компании Ultimaker.

Гордон Стайлз (Gordon Styles), президент и основатель компании Star Rapid, отметил изменения материалов для АП. «Десять лет назад я бы и подумать не мог, что можно печатать материалами высокой прочности, химически устойчивыми и отражающими тепло, — говорит он. — Это было до недавнего времени, но стартап Markforged делает именно это. Вместо более крупных корпораций, предложивших эту технологию, Markforged первой начала создавать детали с ониксом, и даже использует нить из кевлара, углеволокна и стекловолокна HSHT».

Как показывают слова Каволы и Стайлза, контраст между 2008 и 2018 годами в отрасли 3d печати, весьма заметный. За десять лет мы прошли от нескольких компаний до сотен, мы видели взрывной рост возможностей для настольной 3d печати, одновременно с резким падением цены. И мы прошли от теоретических рассуждений об использовании металла и других материалов в 3d печати, до аддитивного производства деталей для аэрокосмической индустрии.

Катушки с нитью, в целлофановой обертке для защиты от влаги

Для сравнения, хотя телефон RAZR V3 от Motorola был самым популярным телефоном в свое время, в 2008 году у нас уже были iPhone, Facebook, Twitter и многое другое. В терминах технологий производства, 2008 год стал годом, когда на IMTS был предложен открытый стандарт связи MTConnect.

Другими новинками IMTS 2008 были многофункциональные станки, машинная обработка пластмасс и композитных материалов. Все эти технологии добились прогресса за последние десять лет, но ни она из них не сравнится с взрывным ростом АП, который мы видели и продолжаем видеть сегодня.

Материалы аддитивной индустрии

Согласно отчету Wohlers Report 2017, рынок материалов для АП вырос с 2016 года на 17 процентов. Это медленнее роста рынка полимерного АП в целом, среднегодовой рост которого (CAGR) составил 29 процентов с 2010 по 2017 годы. Это не должно удивлять: рынок материалов еще не устоялся, и намного проще выпустить новый 3d принтер, чем разработать новый материал для печати.

Разнообразие материалов все еще представляют проблему в АП, хотя и не столь выраженную, как десять лет назад. «Если вернуться в 2008 год, то почти все компании использовали фирменную пластмассу в качестве материала — объясняет Кавола. – Для поставщика, когда потребитель мог покупать только у вас, доходы были высоки. Но если взять материалы, с которыми работали в то время, то их, может быть, были десятки, а не сотни, как сейчас».

Использование фирменных материалов — это хороший способ сохранять монополию, но он сдерживает разработку новых материалов. Если клиент не имеет выбора и должен покупать только у вас, то неважно, предлагает ли ваш конкурент другой материал с лучшими возможностями, поскольку барьер для перехода клиента к нему — покупка нового 3d принтера — слишком высок.

Подобная сегментация рынка также не поощряет инновации у поставщиков материалов. Если вы — DuPont, то намного выгоднее разработать материалы для 3d печати на базе нейлона, которые могут быть использованы на различных принтерах, чем создавать заказную формулу для каждого бренда.

К счастью, рынок материалов для АП в последние годы стал значительно более открытым, как объясняет Стайлз: «Сегодня мы видим, что большинство производителей принтеров открыты к развитию и использованию сырья покупателей и сторонних поставщиков. Это может быть вызвано количеством конкурентов с невысокими ценами и тем фактом, что разработки и проверка новых материалов являются дорогостоящими, и могут иметь очень узкую нишу применения. Это особенно верно для сплавов металлов».

«Поэтому отрасль 3d печати — включая такие компании, как Ultimaker и HP — перешла в последние годы к открытым платформам для материалов, — говорит Кавола. — Это распахнуло дверь крупным компаниям, производящим материалы по всему миру — DuPont, Dow, Owens Corning, Mitsubishi, DSM и многие другие. Я думаю, что это играет большую роль для подталкивания 3d печати в направлении производства, поскольку лучшие специалисты в мире полимерных материалов, начинают использовать материалы, применяемые в литье под давлением, и адаптируют их для 3d печати».

Но при использовании АП в производстве остается проблема сертификации материала. «Проверка материалов для АП и доказательство того, что полученные изделия не хуже, если не лучше изделий получаемых традиционными методами, является основным препятствием в применении АП в производстве, — говорит Стайлз. — Для этого требуются средства и время. В производственной среде необходимо доказывать возможность достижения того же качества для разных поставщиков, а также распространять и увеличивать их количество «.

«Высокие требования стабильного качества для сырья сложно удовлетворить при обширной базе поставки, не говоря уж о различиях в технологии производства и используемых источниках сырья у поставщиков. Все эти факторы необходимо учитывать», — добавляет он.

Возможности материалов для аддитивного производства определенно растут, поскольку в дело вступают крупные поставщики материалов, но какие материалы сегодня действительно пригодны для производственного применения?

Типы материалов для АП

Хотя существует множество материалов, которые можно использовать в АП — включая песок, стекло, керамику, и даже шоколад — в настоящей статье рассматриваются только две категории материалов, играющие наибольшую роль в производственных применениях: полимеры (например, термопластмассы) и металлы.

Металлические материалы для 3d печати

Рынок металлических материалов для АП рос еще быстрее, чем весь рынок АП, и причиной этого являются материалы. В отличие от 3d принтеров, использующих полимеры, которым требуется развитие совершенно новой отрасли материалов, 3d принтеры, использующие металлы, работают с проволокой или (что гораздо чаще) с металлическим порошком, получая их от уже существующих поставщиков.

Конечно, если нужно изготовлять металлические детали высокого качества, требуется использовать порошок, специально разработанный для АП, т.е., в котором соблюдается однородность размеров частиц. Тем не менее, использование одинаковых материалов для металлического покрытия и 3d печатью способствовало развитию порошковой индустрии. Это означает, что можно изготоваливать металлические детали по технологии АП из того же самого материала, из которого они изготавливались до этого.

Да и само по себе, АП предоставляет новые возможности для материалов, которые не использовались при традиционном производстве. Например, некоторые методы 3d печати металла позволяют наносить слои различных металлов — алюминия, тантала и никеля — при изготовлении одной детали. С другой стороны, процесс 3d печати также вносит и новые проблемы, и источники ошибок, включая пористость, остаточные напряжения и деформации.

Но вообще, если металл хорошо ведет себя при сварке или отливке, он также подходит для АП. Как отмечалось выше, уже существует широкий диапазон металлов и сплавов, которые можно использовать в 3d печати, либо в форме порошка, либо в виде проволоки. К ним относятся:

  • Алюминий
  • Кобальт
  • Медь
  • Инконель
  • Никель
  • Драгоценные металлы (золото, серебро, платина)
  • Нержавеющая сталь
  • Тантал
  • Титан
  • Инструментальная сталь
  • Вольфрам.

Рассмотрим более подробно три металла из этого списка.

Аддитивное производство с титаном

Титан является одним из наиболее популярных материалов для 3d печати в производстве, особенно в аэрокосмических и медицинских приложениях. Он объединяет легкость алюминия с прочностью стали, и он не токсичен. Однако этим преимуществам противостоит относительно высокая стоимость титана. Поэтому снижение отходов делает АП привлекательным вариантом для получения титановых деталей.

Порошковый титан легко воспламеняется и взрывается при контакте с водой, при температурах, превышающий 700о C. По этой причине 3d печать с титановым порошком выполняется в вакуумных или в аргоновых камерах. Также можно выполнять 3d печать, используя плавку титановой проволоки электронным лучом (EBM), что устраняет риски взрывной реакции.

К двум наиболее распространенным титановым сплавам, используемым в АП, относятся 6Al-4V и 6Al-4V ELI.

3d печать с алюминием

Алюминий, легкий и универсальный металл, можно использовать для 3d печати аэрокосмических компонентов, и деталей гоночных автомобилей. Хотя он не обладает прочностью стали, алюминий намного легче ее и более устойчив к коррозии. Они также дороже стали, хотя и не настолько, как титан.

Основное преимущество применения алюминия в 3d печати заключается в возможности производства деталей с мелкими элементами и тонкими стенками (до 50 микрон). Алюминиевые детали, изготовленные методами АП, имеют более текстурную, матовую поверхность, в отличие от шлифованной поверхности при производстве алюминиевых деталей на станках

Распространенным алюминиевым сплавом для 3d печати является AlSi10Mg.

Аддитивное производство из нержавеющей стали

По сравнению с алюминием, титаном и большинством других металлов из приведенного списка, нержавеющая сталь является более доступным вариантом. Она может использоваться для 3d печати водостойких деталей высокой прочности и плотности, и используемых в экстремальной среде, такой как реактивные двигатели самолетов и ракет. Были проведены исследования применимости нержавеющей стали 316L для производства корпусов ядерных реакторов при помощи АП. Несмотря на то, что сталь 316L обычно поддается нетепловой обработке, отчет компания Renishaw предполагает, что процесс АП порождает более прочные сплавы, чем при ковке металла, обеспечивая усилие растяжения, превышающее 600 МПа. Детали из нержавеющей стали изготавливаются на 3d принтере либо путем непосредственного нанесение металла, либо используя композитный материал со связывающим веществом. Детали можно покрывать другими металлами для изменения внешнего вида или свойств поверхности.

Распространенными сплавами нержавеющей стали, используемыми в АП, являются 17-4PH, 15-5-PH, ASM 316L и 304L.

Термопластичные материалы для 3d печати

Рынок материалов для термопластичного или полимерного АП развивался несколько десятилетий, а с появившейся тенденций к открытым платформам материалов 3d печати, он стал более устойчивым. Как говорит Кавола: «ОЕМ покупают свои материалы для литья под давлением у крупных компаний, производящих пластмассу. Если эти компании также выпускают нить или порошок для 3d печати, то можно на стадии создания прототипов применять их в 3d принтерах, и затем те же материалы применять для литья под давлением. Идея относительно нова, и возникла лишь в последние годы».

Использование одних и тех же материалов для 3d печати и литья под давлением дает ряд преимущества. Среди них уверенность применения одних и тех же материалов во всем процессе, от прототипов до производства. Есть и менее явные преимущества, такие как отсутствие дополнительной сертификации материалов, увеличивающей время их принятия.

«Процессы литья под давлением и 3d печати для изготовления той же самой детали различаются, но если используется одинаковый материал, то компания получает преимущества от принятия технологий АП», — говорит Кавола.

Стайлз особо отмечает появление одного популярного материала: «В этом году мы увидели появление PEEK, бесцветного, органического, термопластичного полимера для различных производственных систем, — говорит он. — PEEK очень популярен в автомобильной, медицинской, аэрокосмической и химической отраслях. Он устойчив к ударам (твердый), прочный, долговечный, его температура плавления превышает 300ОC, и кроме того, FDA разрешила использовать его при контакте с пищевыми продуктами».

Список полимерных материалов для 3d печати намного длиннее списка металлов, но среди наиболее популярных материалов можно назвать следующие:

  • Ацеталь
  • Акриловое волокно
  • Aкрилонитрил бутадиен стирол (ABS)
  • Акрилонитрил стирол акрилат (АSA)
  • Ударопрочный полистирол (HIPS)
  • Нейлон
  • Поликарбонат (PC)
  • Полиэфирэфиркетон (PEEK)
  • Полиэтилентерефталат (PET)
  • Полиэтилентерефталат триметилена (PETT)
  • Модифицированный гликолем полиэтилентерефталат (PET-G)
  • Полилактид (PLA)
  • Полипропилен (PP)
  • Поливиниловый спирт (PVA)
  • Термопластичный эластомер (TPE)
  • Полиэфиримид ULTEM

Как и в случае металлов, рассмотрим детально три материала из этого списка.

АП с Акрилонитрил бутадиен стиролом (ABS)

До сих пор весьма популярным материалом 3d печати является ABS. Хотя в целом PLA более популярен, но почти всегда для производства лучше использовать ABS благодаря его прочности, долговечности и невысокой стоимости. Для применения на 3d принтере, ABS необходимо нагреть до относительно высокой температуры в 230-250О C, и поэтому он требует подогрева основания принтера для обеспечения правильного охлаждения и предотвращения деформаций.

Детали из ABS получают с использованием методов наплавления (FDM), послойного склеивания, стереолитографии (SLA) или фотополимерной печати. Основным недостатком ABS является его токсичность, выделяемые ядовитые испарения при достижении точки плавления. Полученные на 3d принтерах детали из ABS часто используются для отливки конечных продуктов или инструментальных приложениях.

3d печать с нейлоном

Нейлон (полиамид) представляет собой синтетический полимер. Он прочнее, чем ABS, хотя и дороже. Он гибкий и демонстрирует прекрасную память материала. Послойное склеивание деталей, полученных на 3d принтере, также выводит нейлон на уровень выше среднего.

Чувствительность нейлона к влаге требует его применения в АП либо в вакууме, либо при высокой температуре. Хранить его нужно в герметичных контейнерах. Некоторые детали из нейлона могут сжиматься, что делает его менее точным материалом, чем ABS.

Популярные марки нейлона для АП: Taulman 618, Taulman 645 и Bridge Nylon.

Аддитивное производство с поликарбонатом (PC)

Поликарбонат (торговая марка Lexan), представляет собой легкий и плотный материал с великолепной прочностью на растяжение. Его прозрачность позволяет использовать его для разнообразных приложений, даже при производстве солнцезащитных очков. Усиленный углеродом PC, может применяться для создания впускных коллекторов и других деталей, подвергаемых воздействию высокой температуры.

PC растворяется в дихлорметане, и плавится при температуре 260-300О С, что довольно много для 3d печати. Несмотря на прозрачность, при необходимости PC может быть окрашен. Как и ABS, он требует нагрева основания принтера для обеспечения склеивания и снижения деформации.

Материалы для 3d печати

Эти компоненты M781 были получены на 3d принтерах во время шестимесячной совместной программы RDECOM, ManTech и America Makes. Их цена на тысячи долларов ниже, чем у аналогичных компонентов, созданных стандартными методами производства.

Несмотря на весь прогресс, 3d печать остается скорее нишевой технологией, чем основным направлением в производстве. Кавола объясняет сегодняшнее место АП в секторе в целом, рассматривая две крайности спектра производства;

«Одной крайностью является производство деталей Lego, затрачивая по полцента на каждую, — говорит он. — Вы никогда не сможете конкурировать здесь, используя 3d печать, по крайней мере, не при моей жизни. Другая крайность — применение 3d печати в стоматологии, где все делается в единичном экземпляре. Поэтому наилучшая возможность для 3d печати в производстве находится там, где выпускаются от 100 до 1000 деталей».

Когда вопрос касается материалов, Стайлз отмечает один из аспектов, которые следует учитывать. «Люди должны знать стоимость сырья и производства, — говорит он. — Многие просто не понимают, насколько дорогостоящим может быть процесс АП. Понимание затрат может помочь принимать информированное решение о применении 3d печати традиционной технологии, такой как литье под давлением или обработка на станках с ЧПУ».

Источник

Теги: 

3d принтер, новости 3D печати, 3д, аддитивное производство, печать металлом, DuPont, Vulcan, Ultimaker, Markforger, печать пластиком, печать нейлоном, песок, стекло, керамика, алюминий, никель, титан, тантал, термопластичный полимер, PEEK, ABS, FMD, SLA

 

Внимание!
Принимаем к размещению новости, статьи или пресс-релизы
со ссылками и изображениями. info@additiv-tech.ru